Номер 10, 2014

Атомные электростанции	
Виртуально-цифровая АЭС – современный инструмент поддержки жизненного цикла атомных энергоблоков с ВВЭР	
Аркадов Г.В., Жукавин А.П., Крошилин А.Е., Паршиков И.А., Соловьев С.Л., Шишов А.В.	3
Возможности риск-ориентированного подхода к проблеме повышения надежности и безопасности АЭС	
Комаров Ю.А.	12
Расчетное исследование массообмена в проточной части экспериментальной модели пароприемного участка парогенератора ПГВ-1500 с двумя паровыми патрубками	
Голибродо Л.А., Крутиков А.А., Надинский Ю.Н., Николаева А.В., Скибин А.П., Сотсков В.В.	17
Паровые котлы, энергетическое топливо, горелочные устройства и вспомогательное оборудование котлов	
Закономерности теплообмена в газовых слоях факела топок паровых котлов. Часть II. Законы излучения газовых слоев и разработанная на их основе методика расчета теплообмена в печах, топках, камерах сгорания	
Макаров А.Н.	24
Обоснование причин повреждения экранных труб выносного солевого отсека котла высокого давления	
Федоров А.И.	32
Оценка влияния рециркуляции золы на эффективность золоуловителей на примере батарейного циклона типа ЦБР-150У-1280	
Елсуков В.К., Латушкина С.В.	39
Металлы и вопросы прочности	
Исследование процессов эрозионного износа конструкционных материалов	
Рыженков В.А., Селезнев Л.И., Рыженков А.В.	44
Автоматизация и тепловой контроль в энергетике	
Линеаризация модели теплообменной системы с аппроксимацией транспортного запаздывания	
Шилин А.А., Букреев В.Г.	49
Автоматическая система регулирования нагрузки котла при совместно-раздельном сжигании газов	
Исматходжаев С.К.	55
Теплофикация и тепловые сети	
Оптимальное планирование и обработка результатов испытаний тепловых сетей на гидравлические и тепловые потери	
Гребнева О.А., Новицкий Н.Н.	62

Справочный материал

"Облачные" функции и шаблоны инженерных расчетов для АЭС

Очков В.Ф., Орлов К.А., Чжо Ко Ко

Методы оценки вентиляционных потерь мощности в ступенях паровых турбин ТЭС

Неуймин В.М.

68

АТОМНЫЕ ЭЛЕКТРОСТАНЦИИ

УДК 621.039

Виртуально-цифровая АЭС — современный инструмент поддержки жизненного цикла атомных энергоблоков с ВВЭР

© 2014 г. Аркадов Г.В.¹, Жукавин А.П.², Крошилин А.Е.¹, Паршиков И.А.¹, Соловьев С.Л.¹, Шишов А.В.¹

ОАО "Всероссийский научно-исследовательский институт по эксплуатации атомных электростанций"¹-

ЗАО "Дженерал Энерджи Технолоджиз"²

e-mail: vniiaes@vniiaes.ru

Описан программно-технический комплекс (ПТК) "Виртуально-цифровая АЭС с ВВЭР", представляющий собой совокупность верифицированных исходных данных (наборов входных данных модели для описания поведения систем АЭС в проектных и аварийных режимах работы) и унифицированной системы расчетных кодов нового поколения, обеспечивающей согласованный расчет многообразных физических процессов в активной зоне и оборудовании АЭС. Демонстрационная версия ПТК "Виртуально-цифровая АЭС с ВВЭР" показала принципиальную возможность создания в общей программной среде единой системы расчетных кодов для взаимосвязанного расчета многообразных физических явлений на АЭС проекта АЭС-2006. Полномасштабная версия ПТК "Виртуально-цифровая АЭС с ВВЭР" обеспечит проектные, конструкторские, строительные и эксплуатирующие организации всей необходимой информацией о проекте энергоблока АЭС на протяжении всего жизненного цикла. Отечественный коммерческий программный продукт в виде самостоятельно функционирующего приложения к проекту создаст дополнительные конкурентные преимущества на современном рынке атомных энерготехнологий.

Ключевые слова: виртуально-цифровая АЭС, математическая модель, программно-технический комплекс, система расчетных кодов, суперЭВМ.

ТЕПЛОЭНЕРГЕТИКА, 2014, № 10, с. 12–16

АТОМНЫЕ ЭЛЕКТРОСТАНЦИИ

УДК 621.039

Возможности риск-ориентированного подхода к проблеме повышения надежности и безопасности АЭС

© 2014 г. Комаров Ю.А.

Институт проблем безопасности АЭС Национальной академии наук Украины¹

e-mail: odesssakomarov@mail.ru

Представлены анализ и некоторые обобщения подходов к оценкам риска. Показаны взаимосвязь между различными трактовками понятия "риск" и возможность применения теории нечетких множеств для оценок риска. Предложена обобщенная формулировка понятия оценки риска при риск-ориентированных подходах (РОП) к проблеме повышения надежности и безопасности в атомной энергетике. Описано решение задач с использованием разработанных РОП, направленных на повышение безопасности и эффективности эксплуатации АЭС. Представлены результаты исследований необходимости (целесообразности) модернизации/замены элементов и систем АЭС, а также разработки методической основы внедрения концепции ремонта исходя из технического состояния оборудования. С помощью РОП обоснована возможность сокращения объема испытаний и изменения стратегии обслуживания систем АЭС. Разработана вероятностная модель оценки достоверности измерений концентрации борной кислоты.

Ключевые слова: риск, безопасность, эффективность, АЭС, вероятность, значимость, ремонт, контроль, квалификация, стратегия, надежность, система, эксплуатация, оборудование, метод.

АТОМНЫЕ ЭЛЕКТРОСТАНЦИИ

УДК 621.039

Расчетное исследование массообмена в проточной части экспериментальной модели пароприемного участка парогенератора ПГВ-1500 с двумя паровыми патрубками

© 2014 г. Голибродо Л.А., Крутиков А.А., Надинский Ю.Н., Николаева А.В., Скибин А.П., Сотсков В.В.

ОАО ОКБ "Гидропресс"¹

e-mail: luka.golibrodo@gmail.com

Для верификации методики расчета поля скорости в паровом пространстве парогенераторов (ПГ) реакторных установок (РУ) с водо-водяными энергетическими реакторами (ВВЭР) было проведено моделирование гидродинамики рабочей среды в модели парового объема экспериментального стенда ГНЦ РФ-ФЭИ. Численный расчет был реализован в среде программного комплекса STAR-CCM+ с кроссверификацией в программных комплексах STAR-CD и ANSYS CFX. На основе проведенного расчетного исследования был обоснован выбор расчетного кода и параметров для компьютерной модели пароприемного устройства экспериментальной модели парогенератора ПГВ-1500, таких как схема дискретизации, модель турбулентности и сеточная модель.

Ключевые слова: расчетное исследование, экспериментальная модель, ПГВ-1500, ВВЭР, парогенератор, СFD-модель, верификация, неравномерность полей скоростей, STAR-CD, STAR-CCM+, ANSYS CFX.

DOI: 10.1134/S004036361410004X

ТЕПЛОЭНЕРГЕТИКА, 2014, № 10, с. 24–31

УДК 621.186:536.3

Закономерности теплообмена в газовых слоях факела топок паровых котлов. Часть II. Законы излучения газовых слоев и разработанная на их основе методика расчета теплообмена в печах, топках, камерах сгорания

© 2014 г. Макаров А.Н.

Тверской государственный технический университет¹

e-mail: tgtu_kafedra_ese@mail.ru

Изложены результаты научного открытия законов излучения газовых слоев, образующихся при факельном сжигании топлива и горении электрической дуги в электродуговых сталеплавильных печах. Описана разработанная на основе этого открытия методика расчета теплообмена в электродуговых и факельных печах, топках, камерах сгорания.

Ключевые слова: научное открытие, законы излучения, факел, топливо, печь, топка.

ТЕПЛОЭНЕРГЕТИКА, 2014, № 10, с. 32–38

УДК 621.181

Обоснование причин повреждения экранных труб выносного солевого отсека котла высокого давления

© 2014 г. Федоров А.И.

ОАО "Всероссийский теплотехнический институт"¹

e-mail: a.fedorov.vti@mail.ru

Выполнен анализ повреждаемости экранных труб выносного солевого отсека котла TПЕ-208. Основной причиной повреждений труб является интенсивная подшламовая коррозия внутренней поверхности, вызванная локальным повышением концентрации солей в котловой воде. Расчетно-экспериментальным методом показано, что при непрерывной продувке из первого по ходу воды выносного циклона происходит существенное повышение концентрации солей (более чем в 3 раза) и накипеобразователей в контуре дальнего циклона по сравнению с вариантом продувки из второго по ходу воды контура.

Ключевые слова: барабанные котлы высокого давления, солевые выносные отсеки, повреждаемость, непрерывная продувка, реконструкция.

ПАРОВЫЕ КОТЛЫ, ЭНЕРГЕТИЧЕСКОЕ ТОПЛИВО, —— ГОРЕЛОЧНЫЕ УСТРОЙСТВА И ВСПОМОГАТЕЛЬНОЕ —— ОБОРУДОВАНИЕ КОТЛОВ

УДК 621.928.93

Оценка влияния рециркуляции золы на эффективность золоуловителей на примере батарейного циклона типа ЦБР-150У-1280

© 2014 г. Елсуков В.К., Латушкина С.В.

Братский государственный университет¹

e-mail: elswk@mail.ru

Рассматриваются вопросы математической оценки количества рециркулирующей золы и ее влияния на эффективность очистки газов в золоуловителях с улиточным и полуулиточным подводом газов, оснащенных системой рециркуляции газов и золы. На основе анализа различных публикаций и опыта эксплуатации сделан вывод о сложном и существенном влиянии системы рециркуляции на эффективность золоуловителя. Поставлены задачи исследований, включающие: расчетное определение массы золы на входе в золоуловитель с учетом ее рециркуляции; разработку мероприятий по совершенствованию золоуловителя; оценку эффективности этих мероприятий. Представлена методика расчета расхода рециркулирующей золы в золоуловитель и его секции с использованием формул геометрической прогрессии. На основе представленной методики применительно к батарейному циклону типа ЦБР-150У-1280, улавливающему золу угля Ирша-Бородинского месторождения, определены соответствующие расходы золы, включая значения, при которых обеспечивается эффективная работа золоуловителя. Разработаны и оценены различные варианты модернизации указанного батарейного циклона. Сделан вывод о необходимости дальнейших исследований по уточнению представленной методики, в частности влияния скорости газов (нагрузки котла) на КПД элементов различных золоуловителей, расход рециркулирующей золы и забивание их циклонных элементов.

Ключевые слова: золоуловитель, батарейный циклон, рециркуляция газов и золы, эффективность золоулавливания, очистка дымовых газов, геометрическая прогрессия.

ТЕПЛОЭНЕРГЕТИКА, 2014, № 10, с. 44–48

МЕТАЛЛЫ И ВОПРОСЫ ПРОЧНОСТИ

УДК 621.165

Исследование процессов эрозионного износа конструкционных материалов¹

© 2014 г. Рыженков В.А., Селезнев Л.И., Рыженков А.В.

Национальный исследовательский университет "Московский энергетический институт"²

e-mail: mednalex@mail.ru

Рассматриваются возможности моделирования процессов и результатов эрозионного износа конструкционных материалов на основе, с одной стороны, интерполяционной зависимости, а с другой теории размерностей. В первом случае внимание сосредоточено на безразмерной форме интерполяционного уравнения кривой эрозионного износа, во втором — на основе теории размерностей и экспериментальных данных получена критериальная зависимость скорости эрозионного износа на участке стационарного режима.

Ключевые слова: эрозионный износ, конструкционные материалы, инкубационный период, стационарный период, теория размерностей.

ТЕПЛОЭНЕРГЕТИКА, 2014, № 10, с. 49–54

АВТОМАТИЗАЦИЯ И ТЕПЛОВОЙ КОНТРОЛЬ В ЭНЕРГЕТИКЕ

УДК 681.511.4:697.3

Линеаризация модели теплообменной системы с аппроксимацией транспортного запаздывания¹ © 2014 г. Шилин А.А., Букреев В.Г. Национальный исследовательский Томский политехнический университет²

e-mail: shilin@tpu.ru

Предложен метод линеаризации нелинейной модели теплообменного объекта, переменные состояния которого в точках равновесия определяются на основе численного решения исходной билинейной системы дифференциальных уравнений для стационарного положения регулирующего клапана с электроприводом постоянной скорости. Значительное транспортное запаздывание, обусловленное распределенной конструкцией вторичного контура теплообменной системы, аппроксимируется ограниченным числом апериодических звеньев первого порядка для получения математической модели в форме Коши. Метод линеаризации тестируется на эксплуатируемой теплообменной системе горячего водоснабжения (ГВС), а результаты исследований представлены кривыми разгона.

Ключевые слова: теплообменные системы, трехпозиционное релейное управление, транспортное запаздывание, линеаризация нелинейных моделей.

АВТОМАТИЗАЦИЯ И ТЕПЛОВОЙ КОНТРОЛЬ В ЭНЕРГЕТИКЕ –

УДК 621.311.22

Автоматическая система регулирования нагрузки котла при совместно-раздельном сжигании газов

© 2014 г. Исматходжаев С.К.

Институт энергетики и автоматики Академии наук Республики Узбекистан¹

e-mail: isk1934@mail.ru

Рассматривается автоматическая система регулирования (ACP) тепловой нагрузки барабанного котла при совместно-раздельном сжигании доменного, коксового и природного газов при случайных изменениях расходов доменного и коксового газов. Для повышения эффективности ACP предлагается ввести цепи компенсации случайных возмущений по расходам этих газов в дополнение к типовой ACP, использующей сигнал "по теплу". Приведены оценки параметров передаточных функций каналов регулирования при различных соотношениях расходов сжигаемых газов и нагрузках котла. Изложены результаты исследования комбинированной системы и показана ее эффективность при разных режимах работы котла.

Ключевые слова: котел, сжигание газов, тепловая нагрузка, динамические характеристики, компенсация возмущений, условие инвариантности. ТЕПЛОЭНЕРГЕТИКА, 2014, № 10, с. 62–67

ТЕПЛОФИКАЦИЯ И ТЕПЛОВЫЕ СЕТИ

УДК 656:658.26.001.45

Оптимальное планирование и обработка результатов испытаний тепловых сетей на гидравлические и тепловые потери © 2014 г. Гребнева О.А., Новицкий Н.Н.

© 2014 г. треонева О.А., повицкий п.п.

Институт систем энергетики им. Л.А. Мелентьева Сибирского отделения PAH¹

e-mail: oksana@isem.sei.irk.ru

Предложенные в статье подходы и алгоритмы составляют основу новой технологии идентификации тепловых сетей (TC). Она заключается в активном воздействии на условия, определяющие точность оценивания фактических параметров реальных систем, без знания которых, в свою очередь, невозможно эффективное решение задач реконструкции, наладки и диспетчерского управления. Методика предполагает последовательную стратегию планирования, когда следующий эксперимент выполняется с учетом информации, полученной после обработки результатов предыдущего. При этом каждый шаг методики состоит из этапов планирования режима испытаний, расстановки измерительных приборов, проведения эксперимента, обработки и анализа его результатов.

Ключевые слова: тепловые сети, активная идентификация, математическое моделирование, оптимальное планирование, обработка результатов, гидравлические и тепловые потери. ТЕПЛОЭНЕРГЕТИКА, 2014, № 10, с. 68–72

_____ СПРАВОЧНЫЙ _____ МАТЕРИАЛ

УДК 621.1.36.7(035.5)

"Облачные" функции и шаблоны инженерных расчетов для АЭС

© 2014 г. Очков В.Ф.^{1, 2}, Орлов К.А.^{1, 2}, Чжо Ко Ко¹

Национальный исследовательский университет "Московский энергетический институт"¹ – Объединенный институт высоких температур РАН²

e-mail: OchkovVF@mpei.ru

Статья посвящена важной проблеме — организации компьютерных проектных расчетов различных схем и энергетического оборудования с использованием шаблонов и стандартных программ, имеющихся в Интернете. Сообщается о разработанной интернет-технологии проведения таких расчетов с применением шаблонов, доступных в пакете Mathcad Prime. Рассмотрение ее проводится на примере решения двух задач, относящихся к сфере атомной энергетики.

Ключевые слова: теплотехнические расчеты, Mathcad, теплофизические свойства рабочих тел и теплоносителей АЭС.

ТЕПЛОЭНЕРГЕТИКА, 2014, № 10, с. 73-80

СПРАВОЧНЫЙ МАТЕРИАЛ

УДК 621.165

Методы оценки вентиляционных потерь мощности в ступенях паровых турбин ТЭС

© 2014 г. Неуймин В.М.

ООО "ИНТЕР РАО-Управление электрогенерацией"¹

e-mail: Neva333@yandex.ru

Приведены 28 математических зависимостей для оценки вентиляционных потерь мощности, нашедшие применение в мировой практике в XX в. Установлены границы использования зависимостей и точность получаемых с их помощью результатов расчетов вентиляционных потерь по сравнению с экспериментальными данными.

Ключевые слова: вентиляционные режимы, математические зависимости, вентиляционные потери мощности, среднеквадратичное отклонение.